Diffusion Least Mean Square: Simulations

نویسندگان

  • Jonathan Gelati
  • Sithan Kanna
چکیده

In this technical report we analyse the performance of diffusion strategies applied to the Least-Mean-Square adaptive filter. We configure a network of cooperative agents running adaptive filters and discuss their behaviour when compared with a non-cooperative agent which represents the average of the network. The analysis provides conditions under which diversity in the filter parameters is beneficial in terms of convergence and stability. Simulations drive and support the analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Sparsity-Aware Distributed Conjugate Gradient Algorithms for Sensor Networks

This paper proposes distributed adaptive algorithms based on the conjugate gradient (CG) method and the diffusion strategy for parameter estimation over sensor networks. We present sparsity-aware conventional and modified distributed CG algorithms using l1 and log-sum penalty functions. The proposed sparsity-aware diffusion distributed CG algorithms have an improved performance in terms of mean...

متن کامل

Diffusion L0-norm constraint improved proportionate LMS algorithm for sparse distributed estimation

To exploit the sparsity of the considered system, the diffusion proportionate-type least mean square (PtLMS) algorithms assign different gains to each tap in the convergence stage while the diffusion sparsity-constrained LMS (ScLMS) algorithms pull the components towards zeros in the steady-state stage. In this paper, by minimizing a differentiable cost function that utilizes the Riemannian dis...

متن کامل

Penalized nonparametric mean square estimation of the coefficients of diffusion processes

We consider a one-dimensional diffusion process (Xt) which is observed at n+ 1 discrete times with regular sampling interval ∆. Assuming that (Xt) is strictly stationary, we propose nonparametric estimators of the drift and diffusion coefficients obtained by a penalized least squares approach. Our estimators belong to a finite-dimensional function space whose dimension is selected by a data-dri...

متن کامل

Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium.

We examine the capability of mean square displacement (MSD) analysis to extract reliable values of the diffusion coefficient D of a single particle undergoing Brownian motion in an isotropic medium in the presence of localization uncertainty. The theoretical results, supported by simulations, show that a simple unweighted least-squares fit of the MSD curve can provide the best estimate of D pro...

متن کامل

Distributed Estimation Over Sensor Networks Based on Distributed Conjugate Gradient Strategies

This paper presents distributed conjugate gradient (CG) algorithms for distributed parameter estimation and spectrum estimation over wireless sensor networks. In particular, distributed conventional conjugate gradient (CCG) and modified conjugate gradient (MCG) algorithms are developed with incremental and diffusion adaptive cooperation strategies. The distributed CCG and MCG algorithms have an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1402.4845  شماره 

صفحات  -

تاریخ انتشار 2014